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Abstract

For a spacelike surface with positive definite second fundamental form in any 3-dimensional Lorentzian manifold, a new formula
relating its mean and Gauss curvature with the Gauss curvature of the second fundamental form is obtained. As an application,
necessary and sufficient conditions are established in order to prove that such a compact spacelike surface is totally umbilical.
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1. Introduction

It is commonly argued that (connected) 3-dimensional time-oriented Lorentzian manifolds (3D spacetimes, in
brief) are too unrealistic to give much insight into usual 4-dimensional relativistic models. However, they have been
deeply studied from a purely geometric viewpoint and clearly present great mathematical interest. Moreover, 3D
spacetimes are useful to explore the foundations of classical and quantum gravity (see [7] and references therein).
It is surprising that relativity on 3D spacetimes is simpler than in four dimensions and becomes a topological field
theory [6]. Sometimes, 3D spacetimes even provide us with valuable information for relativistic models; in fact,
relevant results of the problem of the reduction of the 4-dimensional Einstein equations, formulated on circle bundles
over certain 3D spacetimes, have been found [13].

Spacelike hypersurfaces play an important role in spacetimes. Among these hypersurfaces, the totally umbilical
ones, i.e. those whose shape operator is a multiple of the identity transformation, have a rich geometry. In fact, the
study of this family of hypersurfaces lies into the conformal geometry of the spacetime, because a pointwise conformal
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change of the ambient metric preserves the character of being totally umbilical of a spacelike hypersurface. The second
fundamental form (with respect to the unit normal vector field in the time-orientation of the spacetime) of a (non-totally
geodesic) totally umbilical hypersurface is obviously positive definite and thus, it provides the hypersurface with a
new Riemannian metric. It is an obvious remark that, in general, a conformal change of the spacetime metric does
not preserve the character of being positive definite of the second fundamental form of a spacelike surface. But, it
is not difficult to see that if we have a spacelike surface M with positive definite second fundamental form in a 3D
spacetime M̄ , then a pointwise conformal change of the metric of M̄ with a smooth function such that its gradient is
timelike in the same time-orientation of M̄ , provides M with a positive definite second fundamental form with respect
to the new conformal metric. Geometrically, if a spacelike hypersurface has positive definite second fundamental
form, then the future-directed timelike geodesics orthogonal to the hypersurface M are really spreading out near M .
Thus, in particular, the volume of M does increase when it is compact. Therefore, the existence of a compact spacelike
hypersurface with positive definite second fundamental form means that the spacetime is really expanding.

The main objective of this paper is to obtain several characterizations for totally umbilical spacelike surfaces,
among the class of spacelike surfaces with positive definite second fundamental form, in a 3D spacetime. Pursuing
this aim, we develop a new formula for spacelike surfaces with positive definite second fundamental form in a general
3D spacetime M̄ , Theorem 3.4. This formula relates the mean and Gauss curvatures of the induced metric or first
fundamental form, the Gauss curvature of the second fundamental form and the difference tensor of the two associated
Levi-Civita connections.

Similar formulas have been used several times in the past (see for instance [2,3,9,11,14,15]) but always when
an ambient space of constant sectional curvature was considered. This assumption simplifies enormously the
computations because the shape operator is then a Codazzi tensor in the classical sense. However, our spacetimes
have non-constant sectional curvature in general and consequently the Codazzi equation has a non-zero curvature
term in general. This means there is a great difference in our starting point with respect to previous papers in that
direction. In fact, this technical difficulty now produces extra terms in our formula which are not easy to handle and
also complicate its later use.

Although the formula is developed considering the only assumption that the spacelike surface has positive definite
second fundamental form (Section 3), we use it as a tool to study compact spacelike surfaces. It is worth pointing
out that in a general 3D spacetime there may not exist either surfaces with positive definite second fundamental
form (see Proposition 2.1 and the comment thereafter), or compact ones; for instance, when M̄ is a generalized
Robertson–Walker spacetime, it must be necessarily spatially closed (see [4] for details). Even more, not in every
spatially closed generalized Robertson–Walker spacetime does there exist compact spacelike surfaces with positive
definite second fundamental form. In fact, a simple reasoning using the Gauss–Bonnet theorem allows us to see that
this occurs when the fiber is a 2-dimensional torus with its canonical metric, I = R, and the warping function is
f = 1. Section 4 is devoted to provide several characterizations of totally umbilical spacelike surfaces. We find
additional hypotheses for a compact surface with positive definite second fundamental form to be a totally umbilical
spacelike surface. Thus, from Theorem 4.1 to Theorem 4.6 we consider assumptions related to the difference tensor
L between the Levi-Civita connections for the first and second fundamental forms of the surface.

2. Preliminaries

Let (M̄, ḡ) be a 3D spacetime. A smooth immersion x : M → M̄ of a (connected) 2-dimensional manifold M is
said to be a spacelike surface if the induced metric on M via x , x?(ḡ), is Riemannian, which as usual we will denote
by ḡ. If M is an immersed spacelike surface in M̄ , the time-orientability of M̄ allows us to define N ∈ X⊥(M) as the
only unit timelike vector field normal to M in the same time-orientation as M̄ . If A stands for the shape operator of M
in M̄ associated to N , we will denote the mean curvature of M by H = −(1/2)tr (A). The choice of the minus sign
in the definition of H is motivated by the fact that in this case the mean curvature vector field is given by EH = H N ,
and therefore, H(p) > 0, p ∈ M , if and only if EH(p) is in the time-orientation determined by N (p).

The Riemann curvature tensors R and R̄ of M and M̄ respectively are related by the Gauss equation

ḡ(R(X, Y )Z , W ) = ḡ(R̄(X, Y )Z , W ) − ḡ(AX, Z)ḡ(AY, W ) + ḡ(AY, Z)ḡ(AX, W ), (1)

for any X, Y, Z , W ∈ X(M). The Codazzi equation of the surface reads

(∇X A)Y − (∇Y A)X = R̄(X, Y )N , (2)
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for any X, Y ∈ X(M), where ∇ is the Levi-Civita connection of the induced metric on M . Observe that the right-
hand side of (2) vanishes if the ambient space has constant sectional curvature. In the literature, a Codazzi tensor is a
symmetric (1,1)-tensor field B which satisfies (∇X B)Y = (∇Y B)X . Thus, in general, we are not dealing with Codazzi
tensors in this sense.

From (1) it follows that

2K = S̄ + 2 Ric(N , N ) + tr (A2) − (tr A)2,

where K is the Gauss curvature of M and S̄ the scalar curvature of M̄ . We further have that the sectional curvature
K̄ (p) of each tangent plane dx p(Tp M) in M̄ , satisfies K̄ =

1
2 S̄ + Ric(N , N ). Then, using the characteristic equation

for the shape operator, A2
− tr (A)A + det(A)I = 0, we obtain the following expression for the Gauss–Kronecker

curvature of the surface M ,

det(A) = K̄ − K . (3)

When det(A) > 0, the second fundamental form II is given by

II(X, Y ) = −ḡ(AX, Y ), (4)

where X, Y ∈ X(M), determines a definite metric on M . In fact, we can suppose (up to a change of orientation) that II
is positive definite, i.e., II is a Riemannian metric on M . From (3) we thus obtain a necessary and sufficient condition
for II to be positive definite.

Proposition 2.1. On a spacelike surface M in a 3D spacetime M̄ the following two conditions are equivalent:

(i) II is a positive definite metric on M (up to a choice of orientation),
(ii) The Gauss curvature K of M satisfies K < K̄ .

Remark 2.2. This result gives an obstruction to the existence of a spacelike surface with positive definite second
fundamental form in terms of the curvature of the ambient space. In fact, if M̄ admits such a compact spacelike
surface with the topology of S2, it follows from the Gauss–Bonnet theorem that the sectional curvature of M̄ must be
positive on some spacelike plane. �

Remark 2.3. Let M be a 2-dimensional compact manifold, M̄ a 3D spacetime and consider E the set of spacelike
immersions x : M → M̄ with positive definite second fundamental form. Suppose that E is non-empty. Since the
condition det(A) > 0 implies that the usual area functional x 7→ area(M, ḡx ) has no critical point in E , it would be
of interest to know if the area functional with respect to the second fundamental form,

FII(x) := area (M, IIx ) =

∫
M

dΩIIx =

∫
M

√
det(Ax )dΩx ,

where IIx is the second fundamental form corresponding to x , has a critical point in E . It turns out that this is in
general not the case. Let, for example, x : M → S3

1 ⊂ L4 be a compact spacelike surface in the 3-dimensional
de Sitter space of sectional curvature 1. Consider for t ∈ R the parallel surface xt : M → S3

1 ⊂ L4, which is given by

xt (p) = expx(p)(t N (p)) = cosh(t)x(p) + sinh(t)N (p),

where p ∈ M , exp denotes the exponential map in S3
1 and N the unit normal timelike vector field to M . From [1] we

have that

(dxt )p(v) = dx p(cosh(t)v − sinh(t)Ap(v)),

for any p ∈ M and v ∈ Tp M , which implies that

dΩt = {cosh2(t) − tr (A) sinh(t) cosh(t) + det(A) sinh2(t)}dΩ . (5)

We can then compute the variation of dΩIIt =
√

det(At )dΩt . A well-known result states that d
dt |t=0 log(det(At )) =

tr (A−1
t A′

t )|t=0. But, using [1] it follows that (A′
t )|t=0 = −I + A2, and thus

d
dt

∣∣∣∣
t=0

log(det(At )) = −tr (A−1) + tr (A).
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From the characteristic equation for A it follows that tr (A−1) =
tr (A)
det(A)

. Combining these results we have

d
dt

∣∣∣∣
t=0

det(At ) = tr (A)[det(A) − 1].

From (5) it follows further that d
dt (dΩt )|t=0 = −tr (A)dΩ , and therefore we get

d
dt

∣∣∣∣
t=0
FII(xt ) =

∫
M

H [1 + det(A)]
det(A)

dΩII.

Finally, since det(A) and H are strictly positive, it follows that the functional FII has no critical point in E if the
ambient space is de Sitter. �

Now, let ∇
II denote the Levi-Civita connection with respect to II. The difference tensor L between the Levi-Civita

connections ∇
II and ∇ is given by

L(X, Y ) = ∇
II

X Y − ∇X Y, (6)

for all X, Y ∈ X(M). From the Koszul formula for ∇
II, and using the Codazzi equation (2), we find that

L(X, Y ) =
1
2

A−1
{
(∇X A)Y −

[
R̄(X, N )Y

]T
}

, (7)

where [ ]T denotes the tangent component to the surface M . Besides the obvious symmetry L(X, Y ) = L(Y, X), there
also holds the relation

II(L(X, Y ), Z) − II(L(X, Z), Y ) = ḡ(R̄(X, N )Y, Z). (8)

We further need the following result.

Lemma 2.4. Let M be a totally umbilical spacelike surface in a 3D spacetime M̄, with det(A) > 0. Then the trace of
L with respect to II vanishes, i.e., tr II(L) = 0.

Proof. Since M is totally umbilical there exists a smooth function, ρ : M → R such that A = ρ I . Then
II(X, Y ) = −ρ ḡ(X, Y ) for all X, Y ∈ X(M) and therefore

∇
II

X Y − ∇X Y =
1

2ρ
{X (ρ)Y + Y (ρ)X − ḡ(X, Y )∇ρ}.

Thus

L(X, Y ) =
1

2ρ

{
II(X, ∇IIρ)Y + II(Y, ∇IIρ)X − II(X, Y )∇IIρ

}
,

where we have used the fact that ∇
IIρ = −

1
ρ
∇ρ. Then, if we denote by {V1, V2} a II-orthonormal local frame, we

have

tr II(L) =
1

2ρ

{
2

2∑
i=1

II(Vi , ∇
IIρ)Vi − 2∇

IIρ

}
= 0. �

3. A formula for the Gauss curvature of the metric II

On a spacelike surface M such that II is a Riemannian metric, the Riemann–Christoffel curvature tensor RII of II
satisfies

RII(X, Y )Z = R(X, Y )Z + Q1(X, Y )Z + Q2(X, Y )Z , (9)

with

Q1(X, Y )Z = (∇II
Y L)(X, Z) − (∇II

X L)(Y, Z),

Q2(X, Y )Z = L(X, L(Y, Z)) − L(Y, L(X, Z)),



J.A. Aledo et al. / Journal of Geometry and Physics 57 (2007) 913–923 917

and X, Y, Z ∈ X(M). Contracting in (9) we get

RicII(X, Y ) = Ric(X, Y ) + Q̂1(X, Y ) + Q̂2(X, Y ), (10)

where Q̂i (X, Y ) = tr {Z 7→ Qi (X, Z)Y }, i = 1, 2. If we further take the trace in (10) with respect to the metric II,
we find

2K II
= tr II(Ric) + tr II(Q̂1) + tr II(Q̂2), (11)

with K II the Gauss curvature of the surface M with respect to the metric II. Here the trace of a (0, 2)-tensor T
with respect to II is, as usual, the ordinary trace of the (1, 1)-tensor T̃ which is II-equivalent to T , i.e., defined by
II(T̃ (X), Y ) = T (X, Y ), for any X, Y ∈ X(M).

Lemma 3.1. The trace with respect to II of the Ricci tensor Ric is given by

tr II(Ric) = −
tr (A)

det(A)
K .

Proof. From the Gauss equation (1) for the spacelike surface M of M̄ , we have

Ric(X, Y ) = Ric(X, Y ) + ḡ(R̄(X, N )Y, N ) − tr (A)ḡ(AX, Y ) + ḡ(AX, AY ),

for any X, Y ∈ X(M). Now, choose a ḡ-orthonormal local frame {e1, e2} which diagonalizes A, i.e., Aei = λi ei ,
i = 1, 2. Then, {V1, V2}, with

Vi =
1

√
−λi

ei , (12)

is a II-orthonormal local frame. Hence,

tr II(Ric) =

2∑
i=1

Ric(Vi , Vi )

= −

2∑
i=1

1
λi

Ric(ei , ei ) −

2∑
i=1

1
λi

ḡ(R̄(ei , N )ei , N ) + tr (A). (13)

Further, we have that Ric(ei , ei ) = K̄ − ḡ(R̄(ei , N )ei , N ), i = 1, 2. Putting this in (13), and using (3), the proof
ends. �

Now, we define the tangent vector field S(N ) on M through the formula

Ric(N , X) = II(S(N ), X),

for all X ∈ X(M). If we take the trace of the Codazzi equation (2), with {e1, e2} a local frame as above and X ∈ X(M),
we find

Ric(N , X) =

2∑
i=1

{
ḡ((∇X A)(ei ), ei ) − ḡ((∇ei A)(X), ei )

}
=

2∑
i=1

{
Xḡ(Aei , ei ) − 2ḡ(Aei , ∇X ei ) − ḡ(X, (∇ei A)(ei ))

}
= X tr (A) − ḡ(X, div(A)) = II(X, ∇IItr (A)) + II(X, A−1div(A)),

and therefore S(N ) = ∇
IItr (A) + A−1div(A). If we now use A∇

II f = −∇ f , for every smooth function f , we can
write

AS(N ) = div(A − tr (A)I ). (14)
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This equation is known as the momentum constraint in the initial-value problem of General Relativity (see [5] for
a discussion of this equation in the 3-dimensional case). In the particular case of a totally umbilical spacelike surface
with A = ρ I , there holds that

S(N ) = ∇
IIρ. (15)

Lemma 3.2. The trace of the tensor Q̂1 with respect to II is given by

tr II(Q̂1) = −divII

(
AS(N )

det(A)

)
.

Proof. Let {V1, V2} be a II-orthonormal local frame. Then

tr II(Q̂1) =

2∑
i, j=1

{
II
((

∇
II
V j

L
)

(Vi , Vi ), V j

)
− II

((
∇

II
Vi

L
)

(Vi , V j ), V j

)}

=

2∑
i, j=1

V j
{
II(L(Vi , Vi ), V j ) − II(L(Vi , V j ), Vi )

}
+

2∑
i, j=1

{
II(L(Vi , ∇

II
V j

V j ), Vi ) − II(L(Vi , Vi ), ∇
II
V j

V j )
}

+

2∑
i, j=1

{
II(L(∇II

Vi
V j , Vi ), V j ) − II(L(∇II

Vi
V j , V j ), Vi )

}

+

2∑
i, j=1

{
II(L(V j , Vi ), ∇

II
Vi

V j ) − II(L(V j , ∇
II
Vi

V j ), Vi )
}

.

Applying (8) we have

tr II(Q̂1) =

2∑
i, j=1

{
V j ḡ(R̄(Vi , N )Vi , V j ) + ḡ(R̄(Vi , N )∇II

V j
V j , Vi )

+ ḡ(R̄(∇II
Vi

V j , N )Vi , V j ) + ḡ(R̄(V j , N )Vi , ∇
II
Vi

V j )
}

.

If we now make use of the definition (4) of II we find

tr II(Q̂1) = −

2∑
j=1

II

(
∇

II
V j

2∑
i=1

A−1 R̄(Vi , N )Vi , V j

)

+

2∑
i, j=1

{
ḡ
(

R̄(∇II
Vi

V j , N )Vi , V j

)
+ ḡ

(
R̄(V j , N )Vi , ∇

II
Vi

V j

)}
. (16)

Take a local frame {V1, V2} as in (12). Then, for every vector field X = X1e1 + X2e2, we have

2∑
i=1

II(A−1 R̄(Vi , N )Vi , X) =
1
λ1

g(R̄(e1, N )e1, X) +
1
λ2

g(R̄(e2, N )e2, X)

=
1
λ1

Ric(N , X2e2) +
1
λ2

Ric(N , X1e1)

=
1

det(A)
Ric(N , AX) =

1
det(A)

II(AS(N ), X),
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and therefore,

2∑
i=1

A−1 R̄(Vi , N )Vi =
1

det(A)
AS(N ). (17)

Taking into account

II(∇II
V1

V1, V2) = −II(∇II
V1

V2, V1), II(∇II
V2

V1, V2) = −II(∇II
V2

V2, V1),

II(∇II
V1

V1, V1) = II(∇II
V2

V1, V1) = II(∇II
V1

V2, V2) = II(∇II
V2

V2, V2) = 0,

Eq. (16) becomes the one we are looking for. �

Next we consider, for each X ∈ X(M), the operator L X := ∇
II
X − ∇X . If we take a II-orthonormal local frame

{V1, V2}, then the trace of L X with respect to II is computed, using (8), as follows

tr IIL X =

2∑
i=1

II(L(Vi , Vi ), X) +

2∑
i=1

ḡ(R̄(Vi , X)N , Vi )

= II(tr IIL , X) + II(A−1
2∑

i=1

R̄(Vi , N )Vi , X).

Finally, from (17) we find, for every X ∈ X(M),

tr IIL X = II
(

tr IIL +
AS(N )

det(A)
, X

)
. (18)

Lemma 3.3. The trace of the tensor Q̂2 with respect to II is given by

tr II(Q̂2) = ‖L‖
2
II − ‖tr IIL‖

2
II − tr IIL AS(N )

det(A)
, (19)

whereby ‖L‖
2
II is the squared II-length of the difference tensor L.

Proof. Let {V1, V2} be a II-orthonormal local frame. Then, after using (8), we have

tr II(Q̂2) =

2∑
i, j=1

{
II(L(Vi , V j ), L(Vi , V j )) − ḡ(R̄(Vi , N )V j , L(Vi , V j ))

− II(L(Vi , Vi ), L(V j , V j )) + ḡ(R̄(V j , N )V j , L(Vi , Vi ))
}
. (20)

Note that the first term is ‖L‖
2
II and the third ‖tr IIL‖

2
II. Further, the second term in (20) can be written as

2∑
i, j=1

ḡ(R̄(Vi , N )V j , L(Vi , V j )) = −
1
2

2∑
i, j=1

II(A−1 R̄(Vi , N )V j , A−1(∇Vi A)(V j ))

+
1
2

2∑
i, j=1

II(A−1 R̄(Vi , N )V j , A−1 R̄(Vi , N )V j ).

The first term is zero because of the symmetry properties ḡ(R̄(X, N )Y, Z) = −ḡ(R̄(X, N )Z , Y ) and
ḡ((∇X A)(Y ), Z) = ḡ((∇X A)(Z), Y ), while the last term becomes, using again the expression (12) for the local
frame {V1, V2},

1
2

2∑
i, j=1

II(A−1 R̄(Vi , N )V j , A−1 R̄(Vi , N )V j ) =
1
2

2∑
i, j,k=1

[
ḡ(R̄(Vi , N )V j , Vk)

]2
= −

1

λ2
1λ2

[
ḡ(R̄(e1, N )e1, e2)

]2
−

1

λ1λ
2
2

[
ḡ(R̄(e2, N )e2, e1)

]2
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=
1

(det A)2

{
II(e1, e1)

[
Ric(N , e1)

]2
+ II(e2, e2)

[
Ric(N , e2)

]2}
=

1

(det A)2 ‖AS(N )‖2
II.

Finally, the last term in (20) becomes, using (17),

2∑
i, j=1

ḡ(R̄(V j , N )V j , L(Vi , Vi )) = −II

(
2∑

j=1

A−1 R̄(V j , N )V j , tr IIL

)

= −II
(

AS(N )

det(A)
, tr IIL

)
.

Collecting all the terms and using (18), we find (19). �

From formula (11), and bearing in mind the three lemmas above we get

Theorem 3.4. Let M be a spacelike surface with Gauss–Kronecker curvature det(A) > 0 in a 3D spacetime M̄. Then,
the Gauss curvature of the metric II satisfies

2K II
= −

tr (A)

det(A)
K − divII

(
AS(N )

det(A)

)
+ ‖L‖

2
II − ‖tr IIL‖

2
II − tr IIL AS(N )

det(A)
, (21)

where ‖L‖
2
II is the squared II-length of L and tr IIL AS(N )

det(A)
is given by (18).

Note that this formula widely generalizes formula (7) in [3].

Remark 3.5. Choose a II-orthonormal local frame as in (12). We can then express tr IIL in terms of det(A) and S(N )

as follows. From the Codazzi equation we have that

1
det(A)

II(X, ∇II det(A)) =

2∑
i=1

{II(A−1(∇Vi A)(Vi ), X) + II(A−1 R̄(Vi , N )Vi , X)},

for all X ∈ X(M), and hence, using (7) and (17), we have

tr II(L) =
1

2 det(A)
∇

II det(A) −
AS(N )

det(A)
. � (22)

Remark 3.6. With the help of the local frame (12) we can compute the last three terms in (21) explicitly, and thus we
obtain the following expression for K II in terms of the principal curvatures {λ1, λ2} and principal directions {e1, e2}

of the spacelike surface,

2K II
= −

tr (A)

det(A)
K − divII

(
AS(N )

det(A)

)
−

1
2 det(A)

{
e1

(
log

(
λ2

λ1

)) [
e1(λ2) − Ric(N , e1)

]
+ e2

(
log

(
λ1

λ2

)) [
e2(λ1) − Ric(N , e2)

]}
. (23)

Note that this formula is an extension of the formula for K II obtained in [8, p. 18] in the case of a surface in R3

and of formula (12) in [10] in the case of surfaces in ambient spaces of constant sectional curvature. �

4. Main results

In this section we give several characterizations of compact totally umbilical spacelike surfaces, with signed Gauss
curvature, based on assumptions on the second fundamental form II.
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Theorem 4.1. Let M be a compact spacelike surface in a 3D spacetime M̄, with non-zero Euler–Poincaré
characteristic χ(M), det(A) > 0 and K signed (i.e. K > 0 or < 0). Then, M is totally umbilical if and only
if

χ(M)

∫
M

{‖L‖
2
II − ‖tr IIL‖

2
II − tr IIL AS(N )

det(A)
} dΩII ≥ 0.

Proof. Assume first that K > 0. From the Gauss–Bonnet theorem it follows that χ(M) > 0. Then, integrating (21)
we obtain∫

M
K II dΩII ≥ −

∫
M

tr (A)

2 det(A)
K dΩII.

The Euler inequality states that −tr (A) ≥ 2
√

det(A), with equality holding at every point if and only if the surface
is totally umbilical. Hence, since K > 0, we have∫

M
K II dΩII ≥

∫
M

K
√

det(A)
dΩII.

From the Gauss–Bonnet theorem, and using the relation dΩII =
√

det(A)dΩ between the area elements of M with
respect to II and ḡ respectively, we have

2πχ(M) =

∫
M

K II dΩII ≥

∫
M

K
√

det(A)
dΩII =

∫
M

K dΩ = 2πχ(M),

and thus, equality holds in the Euler inequality. The case K < 0 follows analogously. Conversely, if M is totally
umbilical, then it follows from (23) that the integrand in the statement is identically zero. �

Remark 4.2. Note that the assumption on the sign of K is needed to be able to apply the Euler inequality in every
point of M . This condition, however, is not the most general. It is sufficient, for example, to assume that K ≥ 0 or
K ≤ 0 and that the set {p ∈ M | K (p) = 0} has no interior point. In fact, if it is assumed that K ≥ 0, the equality
tr (A) = −2

√
det(A) is satisfied on the open set M+ = {p ∈ M | K (p) > 0} and thus, by continuity, also on the

closure of M+ in M . As the set {p ∈ M | K (p) = 0} has no interior points, M+ is dense in M and the equality
tr (A) = −2

√
det(A) holds on all of M . The case K ≤ 0 is analogous. �

In the very particular case that the 3D spacetime is the de Sitter space S3
1 we have K̄ = 1, and det(A) > 0 is

here equivalent to K < 1. As S3
1 is a space of constant curvature, there further holds that S(N ) = 0. Hence, if K is

constant, det(A) is constant and thus tr IIL = 0. Since every compact spacelike surface in the 3-dimensional de Sitter
space is topologically a sphere, it follows from the Gauss–Bonnet theorem that, if K is constant, then K > 0. Thus
Theorem 4.1 generalizes the following result in [3] (and consequently [12, Proposition 4.2]).

Corollary 4.3. Every compact spacelike surface of the de Sitter space S3
1, with constant Gauss curvature K < 1, is a

totally umbilical round sphere.

Now, let us look into the assumption on L in Theorem 4.1.

Lemma 4.4. Let M be a spacelike surface with Gauss–Kronecker det(A) > 0 in a 3D spacetime M̄. Then for the
difference tensor L, defined in (6), we always have the inequality ‖L‖

2
II ≥

1
2‖tr IIL‖

2
II, and equality holds if and only

if L(X, Y ) = −II(X, Y )
AS(N )
det(A)

.

Proof. Let {V1, V2} be a II-orthonormal local frame and denote by Lk
i j the function ḡ(L(Vi , V j ), Vk). For every k

fixed, (Lk
i j ) is a symmetric 2 × 2 matrix and thus the Schwartz inequality gives

(∑2
i=1 Lk

ii

)2
≤ 2

∑2
i, j=1(Lk

i j )
2. If we

sum over k we obtain the announced inequality, and equality holds if and only if there exist smooth functions λk such
that Lk

i j = λkδi j , for all i, j, k ∈ {1, 2}. Thus, equality holds if and only if there exists a vector field T =
∑2

k=1 λk Vk

satisfying L(X, Y ) = II(X, Y )T , for all X, Y ∈ X(M). Finally, we find that T must be equal to −
AS(N )
det(A)

. �
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We then have another consequence of Theorem 4.1.

Corollary 4.5. Let M be a compact spacelike surface in a 3D spacetime M̄. If det(A) > 0, ‖L‖
2
II =

1
2‖tr IIL‖

2
II and

K < 0, then M is totally umbilical with A = ρ I , ρ constant.

Proof. If ‖L‖
2
II =

1
2‖tr IIL‖

2
II it follows from Lemma 4.4 that tr IIL = −2 AS(N )

det(A)
and from (18) that tr IIL AS(N )

det(A)
=

−‖
AS(N )
det(A)

‖
2

II
. Therefore, we have

‖L‖
2
II − ‖tr IIL‖

2
II − tr IIL AS(N )

det(A)
= −

∥∥∥∥ AS(N )

det(A)

∥∥∥∥2

II
≤ 0.

Since K < 0 it follows from the Gauss–Bonnet theorem that χ(M) < 0, and then, from Theorem 4.1, we have that
M must be totally umbilical. Now, since every totally umbilical spacelike surface in a 3D spacetime has tr IIL = 0 it
follows that S(N ) = 0. Therefore, from (15), we find that ρ must be constant. �

Finally, we can give in the following result a converse of Lemma 2.4.

Theorem 4.6. Let M be a compact spacelike surface in a 3D spacetime M̄, with K̄ > K > 0. Then, M is totally
umbilical if and only if tr IIL = 0.

Proof. Choose a ḡ-orthonormal local frame {e1, e2} which diagonalizes A, i.e., Aei = λi ei , i = 1, 2. From (14), an
easy computation gives

AS(N ) = {−e1(λ2) + (λ2 − λ1)ḡ(e1, ∇e2e2)}e1 + {−e2(λ1) + (λ1 − λ2)ḡ(e2, ∇e1e1)}e2,

and thus we have that

e1(λ2) − Ric(N , e1) = (λ2 − λ1)ḡ(e1, ∇e2 e2),

e2(λ1) − Ric(N , e2) = (λ1 − λ2)ḡ(e2, ∇e1 e1).

From (22) we have that the condition tr IIL = 0 is equivalent to AS(N ) =
1
2∇

II det(A), which gives the two
equations

(λ2 − λ1)ḡ(e1, ∇e2 e2) =
1
2
λ2e1

(
log

(
λ2

λ1

))
,

(λ1 − λ2)ḡ(e2, ∇e1 e1) =
1
2
λ1e2

(
log

(
λ1

λ2

))
.

Now, from (23) we have that ‖L‖
2
II − ‖tr IIL‖

2
II − tr IIL AS(N )

det(A)
must be equal to

1
4 det(A)

{
−λ2

[
e1

(
log

(
λ2

λ1

))]2

− λ1

[
e2

(
log

(
λ1

λ2

))]2
}

,

which is non-negative. The proof is then completed using Theorem 4.1. �

Remark 4.7. From the Einstein equation Ric −
1
2 S̄ḡ = κT , with κ a positive constant and T the energy–momentum

tensor, it follows that K̄ = Ric(N , N ) +
1
2 S̄ = κT (N , N ). Thus K̄ is the relative local energy of an observer whose

rest space is M which is moving with 3-velocity N . Then, the condition K̄ > K > 0 can be interpreted as giving a
lower bound to the total energy,

∫
M K̄ dΩ >

∫
M K dΩ = 4π . �
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